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SUMMARY

A series representation of the oscillatory behavior of incompressible non-
viscous liquids contained in partially filled elastic tanks is presented. By
selecting each term of the series on the basis of the hydroelastic vibrations in
circular cylindrical tanks, each term satisfies the governing liquid equation
(Laplace's equation) but does not satisfy the liquid-tank interface compati-
bility. By using a complementary energy principle presented herein, the super-
position of these terms is made to approximately satisfy the interface compati-
bility. This analysis is applied to the gravity sloshing and hydroelastic
vibrations of liguids in hemispherical tanks and in a typical elastic aerospace
propellant tank. With only a few series terms being retained, the results
correlated very well with existing analytical results, NASTRANl—generated
analytical results, and experimental test results. Hence, although each term
is based on a cylindrical tank geometry, the superposition can be successfully
applied to noncylindrical tanks.

INTRODUCTION

Liquid-fuel tanks are often large components of aerospace vehicles and
significantly affect the vibratory behavior of an entire vehicle. 1In turn, the
motions of liquid in a fuel tank can be expected to play a significant role in
tank vibrations. Consequently, vibration analyses of such tanks must include
interactive coupling between the elastic shell tank structure and the contained
liquid.

Early analytical investigations of liquid-tank vibrations were mostly
limited to simple tank geometries, such as circular cylinders. A thorough sur-

vey of these early investigations is given in reference 1, chapter 9. More
recently, computer programs have been developed which treat the liguid-tank
interaction problem in more general tank geometries found in practice. (See,

for example, refs. 2 to 7.) The procedure used in these references to develop
such programs was to modify existing shell programs to include ligquid-structure
interaction. The key element in these interaction analyses is the selection of
a suitable representation of the liquid oscillatory behavior.

Since modeling the shell tank alone may require many degrees of freedom, a
liquid model which introduces a minimum number of additional degrees of freedom
is desirable. 1In references 2 to 5, finite-element models of the liquid are
employed. Such models introduce a large number of degrees of freedom into the
interaction problem since, in general, a three-dimensional body of liquid must
be modeled. Furthermore, the distribution of finite elements throughout the
liquid may pose modeling problems. In reference 6, the liguid is represented
by a distribution of simple sources on the surface of the liquid. With this
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approach, only the liquid surface is discretized and, consequently, the number
of degrees of freedom is drastically reduced from the number introduced by the
finite~element approach. In reference 7, the liquid model involves a series
representation of the liguid oscillatory pressure with the liquid considered
incompressible and gravity surface effects neglected. 1In this model, the
degrees of freedom are the amplitude coefficients of terms of the series. The
series is chosen so that each term exactly satisfies the governing equation for
the behavior of the liguid (Laplace's equation). Using a series composed of
these terms in a complementary energy principle for the liquid produces surface-
integral governing equations. Thus, as in reference 6, only the liquid surface
is discretized for numerical solution of these equations. Furthermore, the
individual terms of the series capture the essence of the liguid behavior; con-
sequently, the total number of degrees of freedom required for the coupled
liquid-shell interaction problem is only slightly greater than that required
for the empty shell. In addition, this approach can be applied successfully to
a wide variety of shell geometrical shapes.

Inasmuch as the pressure-series representation provides accurate solutions
when gravity effects are neglected, it is reasonable to anticipate that the
approach can be successfully extended to include such effects. The inclusion
of gravity permits the analysis to be applied to the physically important slosh-
ing modes of the liquid which occur with little or no interaction with the
elastic tank.

The purpose of the present paper is to extend the analysis of reference 7
to include gravity effects in the liquid. Further, since the analysis and
application to incompressible liquids were only briefly described in reference 7,
a more thorough description is presented herein. A series representation of the
liquid oscillatory pressure is employed in a complementary energy principle
which is derived herein for incompressible liquids in the presence of gravity.
The terms of the series are uniquely selected to satisfy the governing ligquid
equation. Then, as in reference 7, the liquid pressure loading on the tank wall
which depends on the wall deformation may be calculated without further dis-
cretization of the liquid. The deformation-dependent pressure of the liquid
on the tank wall then becomes a loading term in the shell equations, and existing
shell computer programs may be easily modified to accommodate this loading. 1In
the present paper, the modification of the shell-of-revolution program of ref-
erences 8 and 10 is discussed.

Bpplications of the modified shell program are presented for the following
problems: 1liquid sloshing in a rigid hemisphere, hydroelastic vibrations of an
incompressible liquid in an elastic propellant tank, and hydroelastic vibrations
of an incompressible liquid in an elastic hemisphere. Furthermore, the conver-
gence of the series expansion is considered in each application, and the results
are compared with experiment and with NASTRAN analyses to validate the approach.
Appendixes to the report provide a proof for the complementary energy principle
used herein and descriptions of the NASTRAN analysis and experiment.



SYMBOLS

a radius of hemisphere

31,32,33,A matrices whose elements are defined by equations (32) to (35)

by, mth amplitude coefficient of series expansion, see equations (8)
and (9)

B,B',B" matrices whose elements are defined in equations (51), (41), and (46),
respectively

Cm defined by equation (19)

C diagonal matrix whose elements are cp

F column vector of forces from liquid acting on the wetted shell surface

at IQ nodal stations

g,9 gravitational vector in x-direction and magnitude, respectively
h height of liquid
Ig number of nodal stations on wetted shell surface at which liquid

pressures and forces are calculated

Iy modified Bessel function of first kind of order n

] -1

N Bessel function of first kind of order n

K, modified Bessel function of second kind of order n

1 length of tank in axial direction

m number of half-waves along meridian

M half the total number of terms in series expansion

Mg liquid apparent mass matrix

My, My, Mg number of series terms associated with positive, negative, and zero

values of A,, respectively

n number of circumferential waves



mn

component of N .in x~direction

outward unit vector normal to shell surface

liquid oscillatory compressive pressure

mth series term in nth circumferential trigonometric harmonic
series term defined in equation (61)

matrices whose elements are found from equation (34)
radial coordinate shown in figure 1

value of r at shell wall

meridional coordinate of shell shown in figure 1
shell surface area

free and wetted shell surface, respectively, of liguid
time

transformation matrix defined by equation (51)
complementary kinetic energy of ligquid

liquid displacement vector

component of U in x-direction

gravitational energy

liguid volume

outward normal displacement of shell

complemenfary work of applied displacements

axial coordinate shown in figure 1

position vector of ligquid particle, equation (7)
Bessel function of second kind of order n

defined in equation (17)



Yés),Yéc) defined by equations (15) and (16), respectively

T gravitational load matrix defined by equation (53)

8 variational operator

Gij Kronecker delta function defined in equation (35)

n = g/w?h

n* eigenvalue of equation (46)

0 circumferential coordinate shown in figure 1

Km mth value of selected parameter which determines type of series term
to be used according to equations (14) to (17)

Po mass density of liquid

Om defined by equation (20)

o} velocity potential for liquid

X liquid load matrix defined by equation (52)

i) angle between N and r axis shown in figure 1

w circular frequency

%ﬁ derivative on shell wall parallel to ﬁ

A dot over a symbol denotes differentiation with respect to time.
A prime denotes differentiation with respect to x.
Bars over symbols refer to associated dimensionless gquantities given by
equation (27).
GENERAL THEORY FOR OSCILLATING LIQUID

Variational Principle

In appendix A, the following complementary energy principle is presented
for a nonviscous incompressible liguid undergoing irrotational oscillations of
the complex form eI®t about an initial compressed state:

d(TC - Uc’g - W) =0 (1)



where the variations indicated by the operator & are on all admissible pres-
sure states, ®w 1is the oscillatory circular frequency, Jj 1is J:E, and the
variations of the complementary kinetic, gravitational, and external work
energies are given by

ST, = 'po.Jq V2p 8¢ avg + poty‘ %% 8¢ dsg, (2)
Vo So
g, 5 gooj 30 . 3¢
6UC,g = - %— v, V<o (SuX dVo - -;i— 5 N S N Ny dSo (3)

. gny <8¢>
Sw, = WP, Lw [&b + w—2 S /Y ds,, (4)

In equations (2) to (4), p 1is the oscillatory compressive pressure perturba-
tion above the initial pressurized state Poi  Pg is the uniform mass density
of the liguid; _S, and Vo, are the liguid surface area and liquid volume,
respectively; N is a vector normal to S, and positive outward; ny is the
component of N in the positive x-direction (see fig. 1); g 1is the gravity
vector, which acts in the x-direction; Sy refers to the wetteg portion of Soi
w is the shell displacement perturbation on S, parallel to N; and ¢ is a
velocity potential for the irrotational nonviscous liquid defined such that

ﬁ = grad ¢ (5)

where the dot represents differentiation with respect to time and U 1is the
liquid displacement vector.

The admissible pressure states for egquation (1) must satisfy the free sur-
face condition, namely &, = 0 on Sg, the free surface portion of S,; and the

dynamic equilibrium of the liquid (or equivalently the linearized Bernoulli
equation as established in appendix A), namely

P =po(-b + g « W) (6)

Series Expansion

The velocity potential is approximated by a truncated series:

2M
O = 3w > by an(®) (7)

m=1



~

where Y is the position vector of a liquid particle. In equation (7) and
henceforth, the complex multiplier elWt i understood. Substituting equa-
tions (5) and (7) into equation (6) yields the series expansion for p,

2M
p(¥) = pg ZS [}P an (¥) + g gp(¥)| by (8)
m=1

where the prime denotes differentiation with respect to x. Equations (7)
and (8) may now be substituted into equations (2) to (4) and the results substi-
tuted into equation (1) to yield

- 2M 2M
2 2 v
DO‘S; by V7 ap 25 (w 9p + g qm)6bm avg
1

O m= m=1

2M g 2M gn. 9q
2 m s m
- o L > Bngg | D (qm+w—2'aN—>5bm Sy
w —
m=1

m=1

2M
gny 9q
2 X m _
+ PWw L W z <qm + > N >(3bm ds, = 0 (9)
w m=1

where the effects of ullage volume have been neglected and the integral over Sg
vanishes, since Jp vanishes on Sg.

Since the numerical evaluation of the volume integral occurring in equa-

tion (9) can be a tedious task, it is desirable to cause this integral to
vanish. This can be done by judiciously choosing qp.

Selection of Series Terms

From the derivation of the complementary energy principle presented in
appendix A, the volume integrand is equivalent to a statement of compatibility
or incompressibility, namely

V2 =0 (10)

Substituting equation (7) into equation (10) yields

u

_ 11
Zqubm 0 (11)
m=1



Hence, compatibility is satisfied exactly and the volume integral vanishes
exactly if dp satisfies

V2q, = 0 | (12)

Equation (12) is a well-understood partial differential equation, and con-
sequently the calculation of q for practical classes of problems is straight-
forward. 1In the next section, values of g are selected for liquids con-
tained in arbitrarily shaped shell-of-revolution tanks.

As a consequence of equation (12), equation (9) becomes

2M aqm 2M gnx aqm s
S z bm a—N—— - w z dpy t w—z W bm dSw = Q0 (13)
W \m=1 =1

Equation (13) is recognized as an approximate statement of the interfsce con-
tinuity between liguid and shell.

By selecting each series term on the basis of equation (12), each term
captures a facet of the liquid behavior observed in classical liquid-shell
vibration problems, such as periodically supported cylindrical shells contain-
ing incompressible liquid. (See also the discussion in rxef. 7.) In other
words, each term of the expansion may be viewed as being the exact modal pres-
sure in a mode of some classical ligquid-shell problem. The superposition of
these terms is forced through equation (13) to approximately satisfy the liquid-
shell interface condition of tank geometries radically different from the
classical problem.

Liquids in Shells of Revolution

General Solution of Laplace's Equation

In many practical problems, the liquid is a body of revolution contained
in a shell of revolution, as shown in figure 1. For such cases, each term of
the series may be further expanded into trigonometric harmonics about the liquid
circumference. The deformations of the shell may also be so expanded, and the
expansion is uncoupled for each trigonometric harmonic. Then, all possible
solutions of equation (12), when expressed in cylindrical coordinates, x, r,
and 0, are the superposition of



(s)
Zmn(r) Y (%) (1
= ' (14)

(c)
Zmn(r) Ym

S m S M)

(x) M < m S 2M)

where the notation Gy, has been introduced to designate the coefficient of
the nth harmonic and

sin (XJX;) (h, > 0

Y, (x) = sinh (x |xm|) A < O (15)

v (x) = { cosh (x Al ) (A < O (16)
1 Ay = O
-
3. (=1l )
A < O

Zmn(r) = In(r\IE) (17)

Ay > O

Lftn (Km = 0)



where In, K, » Jn, and Yn are modified and unmodified Bessel functions of
the first and second kinds, and for the present, it suffices to consider Am
arbitrary. For nontoroidal shell-of-revolution tanks, the Bessel functions of
the second kind, Y, and K,, and r must be dropped since they are singu-
lar at the axis of revolution (r = 0).

Of course, the general solutions of equation (12) need not be expressed in
cylindrical coordinates, that is, as cylindrical harmonics. For example, in
tanks whose geometry more closely resembles spheres than cylinders, use of
spherical coordinates should cause the pressure series expansion to converge
more rapidly. Furthermore, if the liquid is outside of the tank, it is best to
use spherical coordinates and hence spherical harmonics for dmp - However, as
is shown in the applications sections of this paper, cylindrical harmonics for
9y Provide accurate results for spherically shaped tanks with only a few
terms being used. Further, the cylindrical formulation has the decided advan-
tage that computer routines for Bessel functions are more widely available than
routines for the associated Legendre polynomials required if spherical harmonics
are used.

Satisfaction of Interface Continuity Relation (Eq. (13))

Substitution of equations (14) to (17) in equation (8) yields

M
px,r) = Po ZS @”zbm + gcmbm+M)YéS)(x) Zmn(r)
m=1
M
+ 05 (gOmbm + wzme)Yn(lc) (x) Z__(x) (18)
m=1
where
- |>\ml O‘m > O)
cp =\ Il Ay < 0) (19)
0 (A = 0)

10



o (g # O
o = (20)

L1 Ay = 0)

Again, neglecting the effects due to ullage volume, p = 0 on the free
surface (x = 0). Enforcing this condition yields from equation (18)

M

(ngmbm + wzbm+M)zmn(r) =0 (21)
m=1

Inasmuch as equation (21) must hold for all «r

90,
P = = 5 P (22)

Substituting equation (22) into equation (7) yields
M a
. 90m
w
m=1

Substituting equations (22) and (23) into equation (6) and using the Tong
hypothesis of equation (Al8) yields the oscillatory pressure,

M
2 z 90n gnx(aqmn 90 OGm4eM
= —_ ——— + -—
p DOU) qmn w2 qm.l_M,n wz ‘ aN wz 'BN bm (24)

m=1

Finally, substituting equation (22) into equation (13) yields

gnx(aqkn _ 9% dqy+M

~ on ) 8oy pds, = 0 (25)

11



Since equation (25) holds for all variations of by,

M
aqmn _ 0 aqm+M,n b - - g0y
s 9N 2 9N m Y1 |9%n wz qk+M,n
W .

m=1 w
gny 9dyp g 2 Bqk+M,n
22 N ;;5) 0k Taw | B T O (261

The following relations nondimensionalize equation (26):
r = r/h; X = x/h; N = N/h; w = w/h; R = R/h; s = s/h;
m

b, = by/n% X, = h?Ay; Op = hopi G = heps N o= g/hw? (27)

where h is the liquid height, R is the value of r at the shell wall, and
s 1is a meridional coordinate as shown in figure 1. Equation (26) now becomes

w

M
‘g‘ Z 1_; (E)qm _ na aqm+M,n> _ V_v q _ n(6 q - aqkn)
S & m IN m 3R kn k2k+M,n b 4 35

_ 9g - -
- N°n, 0y —% R(s) ds(x) = 0 (28)

Following reference 7, w 1is discretized by assuming a linear interpolation
of w Dbetween Ig liquid nodal stations on the wetted shell wall. Then
equation (28) may be expressed in matrix notation as

[A - nAy - nR, - n3?\3:| (o) = [Q - nQ; - nzéz:' (W) (29)

~

where the elements of A&, Al, A2, and A3 are defined as

s(1) qun _
A = —_— R d 30
km ‘S; IN qkn s ( )

12



9dmn 99kn\= -
- = (31)
"X 3N on
~ _ s (1) aqm+M,n - aqkn
By km = o O 9N Ox9k+M, n Ny 3N
oq_ . 9gq -
* 00y, — Mg g3 (32)
ON N
s(1) qu ag
~ - = +M,n k+M,n = _—
A3,km = - 5; 03 0Ny e o R ds (33)

where 1 S k<M and 1 2 m S M. The elements of the matrix Q are derived as
7

in reference by discretizing the wetted shell wall as

Xi+1 _ X - Xj -
Qi = (1 - 6k,Ig> jﬁ RiL - -2 /%n dx/cos U

X3 i+l i
X - Ri_q\o _
+ (l - Gil) ji <:——*—:}—E>qun d%/cos ] (34)
Xi-1 \*i 7 ¥ji-1
where the Kronecker delta is
0 (i # 3)
815 = o (35)
1 (1 =3)

and Y 1is the angle formed by N and the positive r axis as shown in fig-
ure 1. Also, the notation {%} and {b} represent column vectors of discrete
normal shell displacements and series amplitude coefficients, respectively.

The elements of §1 and §2 are found from equation (34) by replacing

N N
a, ﬁl, 32, and §3 are shown to be symmetric matrices.

~ 9dkn - 99K+M,n . .
dxn by quk+M,n - Dy and Oyn, — <= | respectively. 1In appendix B,

13



Some insight into the behavior of equation (29) may be revealed by con-
sidering two limiting cases. In the first case when w? + 0 (hydrostatics),
equation (29) reduces to

{6} = %[ﬁ;lazj{a} | (36)

Substituting equation (36) into equation (24) gives the vector of pressures at
each liquid nodal station on the wetted shell wall,

{p} = -p, [Ke 1w} (37)
where Kjp 1is a gravitational stiffness matrix defined as
[ke] = on[e'133'5,] (38)

The elements of the matrix B and the diagonal matrix T are

' 5 Odm+M (;‘i'_l)

im m aﬁ Rj (39)

0 (1 # 3)
(i =13)

Ql

with §i and ﬁi being the values of X and T on the shell wall at the ith
liguid nodal station as discussed in reference 7. The negative sign in equa-
tion (37) appears because positive pressure indicates compression.

As a second limiting case, consider the high-frequency oscillations when
w2 » o, Equation (29) then reduces to

{5} = [a lo)w (41)

Substituting equation (41) into equation (24) gives the vector of pressures at
each liguid nodal station on the wetted shell wall,

{p} = pow?[my] W} (42)

14



where Mg is a liquid apparent mass matrix defined as in reference 7 to be

[ng] = [Bra~2] (43)

where the elements of B" are
B" = qmn(xi,Ri) (44)

In general, equation (29) may be solved for the amplitude coefficients as

follows:

{B} = [A - ngl - T’]2£2 - T]3£A3] —l[Q - T]él - n2§2:| {Vv} (45)

provided N = n* where n* is an eigenvalue of the transcendental equation,

[AJ{E} = [n*ﬁl + n*2ﬁ2 + n*3£5]{5} (46)

Most of the eigenvalues of equation (46) provide the sloshing frequencies of the
liquid in a rigid tank, that is, for w = 0. Their evaluation is discussed in
the applications section of this paper. However, equation (46) by itself can
result in a set of extraneous eigenvalues. This can occur because the varia-
tional principle used herein and derived in appendix A requires that ©&p not

be identically zero for all x and r. Usually, this poses no problem; how-
ever, since Jp depends explicitly on the eigenvalue in this formulation, then
eigenvalues which make Jp vanish identically may exist. In other words, the
roots of the second bracketed term in equation (28) show up as erroneous eigen-

values of equation (46). Such roots occur only when
2 1
n, =1 and nN° = ——= (m =1,2,...,M) (47)
OmCm

Hence, erroneous eigenvalues can only appear when gravitational effects are
included. These eigenvalues may be readily recognized from equation (47) under
the rare circumstances in which they can occur.

Substituting equation (45) into equation (24) gives the pressures on the
wetted shell wall as

{p} = pw?[x]{&} (48)

15



where

[x] = [][a - vy - 028, - n%4s) [0 - ndy - n%)] (49)
and the elements of [B] are
Bin = (14 10 o )|amn (%1 Rs) = e, n(1 7))
IN i1 m+M,n\"1’"1
The forces on the shell wall may also be calculated as

tr} = [0 e} = o0 [r7 2] (@) (50)

where as in reference 7,

1
0 . . 0
Rl ASl
1
0 R2 AS2 0

[] = _ (51)

JE
R._ A
Iy 51y

-J

As a consequence of the Maxwell-Betti reciprocal theorem, the matrix
product T'lx is symmetric.

Convergence of Pressure Series

The convergence properties of the pressure series is a critical subject.
A general proof showing its convergence in a coupled hydroelastic problem is
not available and may not be possible. However, it is possible to demonstrate
its rapid convergence to accurate results through the use of examples. Such
examples are presented in the applications section of this paper.

16



Hydroelastic Modes

Hydroelastic modes are those modes in which there is significant coupling
of the liquid and shell motions. In contrast, slosh modes involve little or no
shell motion. Previous authors have reported that gravity has little effect on
the hydroelastic modes. (See ref. 1, ch. 9, and ref. 11, for example). In
other words n << 1. Consequently, when searching for the hydroelastic modes,
higher order terms in N may be dropped in equation (46), resulting in

[x]

[mg] + n[T] (52)

where

[r]

I:BA_]‘] [ﬁlA‘lQ - A‘lﬁl] (53)
Equations (48) and (50) may now be rewritten as

{p}

(pow2 [g] + %Tg[FD{‘_“} (54)

{r}

(powz[T_lMQ] + P—;EI:T‘:LF:') {w} (55)

Equation (54) or (55) provides the wall-deformation-dependent loading terms in
the shell equations.

MODIFIED SHELL EQUATIONS

Discretized Form

If the shell equations have been discretized, as they would be for a
finite-element or finite-difference shell solution, the ligquid loading is
readily accounted for in the shell equations as,

c
E
cl
N
1=
o
1o
1
1
1
1 ©
1
1
1
1
1 Ct
i

0 = Iy ) pog - _ - W | _ (56)

d
t
o
—
£
o
=
+
=]
H
=
=
)

17



where the K's refer to stiffness and the M's to mass and the dimensionless
vector U includes tangential shell displacements as well as those radial ones
not on the wetted shell surface; in deriving equation (56), the approximate
hydroelastic liquid loading of equation (55) has been used. The eigenvalues
and eigenvectors can be extracted from equation (56) by the standard
procedures.

Differential Equation Form

In some existing computer programs for shell vibration analysis, the dif-
ferential equations are solved by numerical integration. This is the case for
the numerical analysis of references 8 to 10. This analysis and the associated
computer program have been modified to incorporate the shell-wall-deformation-
dependent liquid pressure loading developed in the previous section. The
results presented in the applications section of this paper were generated from
this modified shell-of-revolution program.

The program uses a generalized form of Novozhilov's shell egquations which
include the nonlinear case of moderate rotations. These equations are trans-
formed into a set of eight first-order differential equations in eight basic
force and displacement shell variables and are solved using a Zarghamee version
of the forward integration method.

Among other features, the program has branched shell capability and can
account for effects of prestressing of the shell walls. The branched shell
capability makes it possible to treat assemblies of tanks often found in
practice. Prestress effects in shell walls, which effectively stiffen the
tank, can result from initial pressurizaticn of the tank or the weight of the
ligquid under gravity or other longitudinal acceleration. (Previous work for
cylindrical shell structures, such as that in ref. 12, has shown that prestress
effects can be important.)

The shell differential equations as presented in reference 8 are

d¥n _
r 95 T ag(s) vy - buls) zy = Fp(s) (57)
dz
Y a‘s—— - Cn(S) yl'l -+ dn(s) Zn =0 (58)
where s 1is a meridional coordinate. The force vector y,, displacement
vector 2zp, and coefficient matrices a, b, c, and d are defined in the
reference. 1In addition, the surface load vector F,(s) is given as

18



e N
Xén)r sin ¥
-Xén)r cos Y
F,(s) = 5
0
0
" J

and

where m

trigonometric circumferential component o

tion,

To evaluate pn(E,E), wi(s)

function which vanishes everywhere except at
Performing the integrations in equation (28) yield

[ - &) - n%&, - n3R;] () -

where

at (€)= qpy ()

-~

. -
q2n(£)

.
Lan(E)

= MOy I, n ()

=)
*
qln(E)

s~ _
Xy = w’mgw +S p,(s,8) w(E) R(E) dg
0

- nnx

-

3

(1

%
N qln

N "Mn 77J

A

s 1is the shell mass per unit of shell area and pn(g,g) is the nth
f the pressure at some meridional loca-
s, due to a unit of displaced ligquid volume at meridional location,

(E)W

A

(59)

(60)

.

in equation (28) is set equal to a Dirac delta
s = £, where it goes to infinity.

(61)
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Solving for {b} in equation (61) and substituting into equation (24) result
in

S 3 * = WT ( x = ~ 9 x .z
d;, (s) = nny w q;,(s) q;,(8) = nny Y qln(E)T
- 2 - = 9 =
* - * * - — *
) a3, (8) = nny Sﬁ'qzn(s) ) " -1 aj (&) - nny 5 L©n &)
Pn(5,8) = pow? . [A -na; - NA, ~ M A3:' . (62)
q* (8) - nn C q* (s) a* (&) - mn g=-q* (E)J
\."Mn X 3N Mn J \_"Mn X 3N “Mn

Since A, ﬁl, g2' and g3 are symmetric matrices, it follows from linear

algebra that p_(s,&) is symmetric, that is, pn(E,é) = pn(é,g). (See, for
example, ref. 13.)

APPLICATIONS OF THEORY

The purpose of this section is to validate the pressure-series theory
developed in this paper and to demonstrate its rate of convergence through
appropriate examples. Two sets of examples are considered. The first deals
with the sloshing of incompressible liguids in rigid cylindrical and hemisphe-
rical tanks. For the cylindrical tank, it is shown that the present theory
yields the exact results; while for the hemispherical tank, correlation with
other approximate theories provides validation. The second set of examples
deals with the hydroelastic vibrations of incompressible liquids in a flexible
propellant tank and in a flexible hemisphere. Validation is provided through
correlation with NASTRAN analysis and experiment. For the hydroelastic results,
the modified shell-of-revolution program discussed in the section entitled
"Modified Shell Equations" was used.

Sloshing Motion of Incompressible Liquids in Rigid Tanks

General Considerations

From equation (46), the sloshing frequencies for incompressible liquids are
given by the roots of

* A * DA~ *3A _
Det /A - N A; - n "A;, - A3 =0 (63)

where the elements of A, ﬁl, ﬁz, and 33 depend on the values of Ap. These
values are arbitrary; however, judicious choices provide rapid convergence of
the solution. An examination of some practical cases illustrates the manner in
which AR may be selected.
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Cylindrical Tanks

For cylindrical tanks, equation (63) greatly simplifies if Am

m=1,2,.

where 7 = Ry-A

integrals

where

Substituti

..,M) are the negative roots of

dJg

Tny o
g (@) =0

me
need only be carried out at x =

A]’(I'['l =
0
. 0
a =
1l,km - 2
52 [ @) T
N 0
a =
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~ 0
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Om S; (qm+M,nqkn)§=lR dr
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Then from equations (30) to (33) and (14) to (17), the
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(66)

(67)

(68)
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Hence, setting the first bracketed term of the left side to zero gives

n* = 2 coth Oy (71)
Ok
which are the exact sloshing eigenvalues for cylindrical tanks. (See ref. 15,

for example.) The roots of the second bracketed term are, from equation (47),
associated with the vanishing of J0p and are thus ignored.

Hemispherical Tanks

Since the selection of Am on the basis of equation (64) led to exact
results for cylindrical tanks, it is reasonable to use this same selection basis
for geometries of other tanks and allow the superposition of the series terms
to satisfy the interface condition approximated by egquation (13). To verify the
validity of this approach, consider a hemispherical rigid tank of radius a and
liquid height, h = a. Numerical solutions for M = 2, 9, and 10 are given in
table I along with corresponding solutions from the literature as compiled in
reference 6. It is seen that the series solution agrees reasonably well with
published results and converges rapidly.

Hydroelastic Vibrations of Incompressible Liquids

in Elastic Tanks

General Considerations

Previous investigations have concluded that gravity effects are almost
always negligible in the hydroelastic vibration modes (ref. 1, ch. 9, and

ref. 12, for example). Hence in this section, these effects are neglected
(i.e., n = 0). From equation (62), the pressure loading on the shell is
then

3\ A
(qln (qln
92n 92n
- 7y _ 2 -1
p,(s,&) = pw - \A . (72)
g g9
9 Mq) MnJ

where the matrix A, as defined in equation (30), depends on Qpps Which in
turn depends on the selected values of Am (see egs. (14) to (17)). The
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terms contain modified or unmodified Bessel functions depending on

whether A, is positive or negative, respectively, and contain powers of «

if Am = 0.

Following the line of reasoning in reference 7, one selects the positive
set of A, as

A
A

mm \2
A, = (T) 1<msm (73)
and the negative set is selected to satisfy equation (64). Subsequently, the

number of positive, negative, and zero values of Am selected are denoted by
My, M,, and M3, respectively, whose sum is M.

Flexible Cylindrical Tanks

The motivation for using equations (64) and (73) to select Am is that
these values lead to a pressure series which provides the exact solution for
cylindrical tanks. (Compare pressure series with that of ref. 15.) In the next
section, it is shown that even if the tank geometry is far from cylindrical, the
superposition of these terms still yields accurate results when applied to the
interface continuity condition of equation (13).

Flexible Propellant Tank and Comparison With Test

The propellant tank shown in figure 2 has been chosen for the purposes of
this paper because it comprises a variety of geometries usually encountered in
aerospace applications. The tank is composed of four distinct sections: a
nearly spherical upper dome, a conical section, a cylindrical section, and a
nearly ellipsoidal lower dome. A flange at the juncture of the lower dome and
the cylindrical section of the tank is clamped to a heavy steel fixture shown
in figure 2; thus a fully clamped condition was assumed in the analyses. The
1/8-scale tank approximates a ligquid oxygen tank proposed for the space shuttle.
Its specifications are given in appendix D.

Nonaxisymmetric and axisymmetric vibrations of the tank were investigated
both analytically and experimentally. Both the present analysis and the NASTRAN
hydroelastic analysis were used. The NASTRAN modeling is discussed in appen-
dix C and the experimental procedure is discussed in appendix D.

Nonaxisymmetric modes.- Experimental and analytical results for the non-
axisymmetric modes of the propellant tank are compared in figures 3, 4, and 5.
Natural frequencies are plotted as a function of the circumferential wave
number n in figures 3(a), 4(a), and 5(a) for fill conditions of empty, three-
quarters full, and full. Representative meridional mode shapes for a few select
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values of n are illustrated in figure 3(b) for 1 and 2 half-waves along the
shell meridian (m = 1, 2) and in figures 4(b) and 5(b) for 1, 2, and 3 half-
waves along the shell meridian (m = 1, 2, 3).

Natural frequencies predicted by the present analysis are in excellent
agreement with the experiment at all f£ill conditions and, in general, are some-
what more accurate than the NASTRAN results. Both the present analysis and the
NASTRAN analysis included the effects of hydrostatic pressure induced on the
shell wall from the weight of the liquid. The hydrostatic pressure produces a
stiffening of the shell which increases with n. This effect is discussed more
fully in a subsequent section of the paper.

For the empty tank, the curves of frequency versus the number of circum-
ferential waves n for m=1 and m = 2 cross at n = 12, whereas for an
empty cylindrical tank, these curves, as would be expected, converge at higher
values of n. The reason for this atypical behavior exhibited in figure 3(a)
becomes apparent in figure 3(b). At n = 2, the lowest meridional mode is
clearly m = 1 with nearly equal response on the cylindrical and conical sec-
tions of the tank. As n increases, however, the response of the cylindrical
section decreases until at n = 16, virtually all of the response is in the
conical section. Similarly, at m = 2, the response of the conical section
decreases as n 1increases until at n = 16 all the response is in the cylin-
drical section. Thus at the higher circumferential wave numbers, the cylindri-
cal and conical sections of the empty propellant tank behave essentially as
separate entities.

The meridional mode shapes from the present analysis, which are virtually
identical to those generated by NASTRAN, are shown in figures 3(b), 4(b),
and 5(b). Qualitative experimental mode shapes were in agreement with the
analytical results.

Axisymmetric modes.- Variation of the analytical and experimental fre-
quencies for the first three axisymmetric (n = Q) vibration modes of the pro-
pellant tank are presented in figure 6(a) as a function of the liquid depth
relative to the tank length (h/1). The agreement of both analyses with experi-
ment is generally good. The undulating nature of the curves has been observed
by others (ref. 16) and is thought to be a consequence of changes in the
meridional mode shape.

The first three analytical meridional mode shapes are presented in fig-
ure 6(b), for several liquid depths. For clarity, only the mode shapes from
the present analysis are shown. NASTRAN results are only slightly different
except at the apex of the lower dome. As noted in appendix D, experimental
axisymmetric nodal patterns could be detected only on the lower dome. These
experimental lower dome nodal patterns are identified in figure 6(a) by the
different test-point symbols and correlate well with the analytical lower dome
mode shapes of figure 6(b).

Hydroelastic pressure effects in 1/8-scale tank.- As noted previously, the
analytical results presented in figures 4(a), 5(a), and 6(a) include the effect
of hydrostatic pressure. The magnitude of this effect on the nonaxisymmetric
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shell frequencies of the propellant tank model may be observed in figure 7 by
comparing the results of the present analysis including hydrostatic pressure
(middle curve) with results from the same analysis without hydrostatic pressure
(lower curve). Although the effect of hydrostatic pressure becomes substantial
for n > 6, its effect is minimal at the lower values of n. If only the lower
modes are of interest, as is often the case, the mathematical model may be
simplified by neglecting the hydrostatic pressure with little loss of accuracy.

Hydrostatic pressure effects in equivalent full-scale tank.- Replica

scaled models are commonly utilized to study the dynamic behavior of a structure
in one of two ways. If the model includes sufficient structural detail, dynamic
analysis may be foregone and full-scale behavior extrapolated from subscale test
results. More commonly, dynamic tests of a simplified structural model are used
to validate a mathematical model which in turn is applied to the full-scale
structure. Caution must be exercised in using either approach to study the
dynamic behavior of full-scale propellant tanks.

In general, the natural frequencies of a replica model are inversely pro-
portional to the scale factor if the internal pressure of both model and full-
scale counterpart are identical at corresponding locations. This requisite
causes no difficulties in testing empty tanks but it would be necessary to test
a 1/8-scale replica model containing liquid in a simulated 8g gravity field if
the hydrostatic pressure of a full-scale tank at 1lg is to be simulated.

Thus, substantial errors may result if hydrostatic pressure is neglected
in applying the present analysis to an equivalent full-scale tank containing
liquid. The magnitude of the effect of hydrostatic pressure for an equivalent
full-scale tank filled with a liquid is shown by the difference between the
upper and lower curves in figure 7. (Due to the scaling factor, all the fre-
quencies indicated in this figure are 8 times those of a full-scale tank.)

The upper curve results from the present analysis of the subject propellant
tank (1/8-scale) in an 8g gravity field. As may be seen, the effect of hydro-
static pressure is much greater for the full-scale tank than for the 1/8-scale
model. For n = 6, neglecting hydrostatic pressure effects results in a fre-
quency prediction error of only 15 percent for the 1/8-scale model subjected to
1lg but nearly 100 percent error for an equivalent full-scale tank at 1lg. These
scale effects of hydrostatic pressure would become even more pronounced if the
longitudinal acceleration during flight was taken into account.

Free surface motion.- Figure 8 illustrates the free surface mode shapes

for different numbers of circumferential waves n for m = 1, 2, and 3 merid-
ional half-waves in the full and three-quarters full propellant tank. As indi-
cated in figure 8, the entire free surface is moving when n = 0; however as

n increases, the motion becomes localized to the shell wall with little motion
occurring near the center line of the tank. This phenomenon is known to occur
in practice and is readily accounted for in the present analysis by the modified
Bessel functions in the series expansion. This helps to explain why the series
expansion is so accurate for this type of problem.

It is also interesting to observe that the surface motion undergoes little
change with meridional wave number. Consequently, mode shapes must be charac-

terized by the motion of the shell wall.
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Convergence of pressure series solution.- For the full propellant tank,
analyses were performed using several combinations of M, M,, and M3 in
order to study the significance of each type of series term in such problems.

The analyses were performed for the three lowest frequencies at n = 6,
m =1, 2, and 3; frequency results are presented as ratios to the corresponding
converged values in table II. These results show that with My = 5, converged
frequencies are obtained irrespective of the values of M; and M3. (As
before, Mj;, Mp, and M3 are the number of user-selected positive, negative,
and zero A, where the positive Km are given by equation (73) and the nega-
tive Ay by equation (64).) Hence, only the positive set of Ap need be
selected, although addition of unnecessary terms did not deteriorate the
results. Though not shown in table II, this conclusion has generally been true

for all n > 0 (nonaxisymmetric modes); however, for n = 0 (axisymmetric
modes), Ap = O should be retained (i.e., M3 = 1).
In figure 9, the series convergence at n = 6 1is further examined for

increasing values of M; with My = M3z = 0. It is clear from the figure that
the convergence of the series is very rapid. Consequently, it is concluded that
although the A, are selected on the basis of hydroelastic vibrations in cylin-
drical tanks, the same selection may be safely extended to other geometries.

Note that for nonaxisymmetric modes, the lower dome has negligible motion;
hence the validity of the present analysis for such a dome undergoing nonaxi-
symmetric motion is not confirmed by the propellant tank results. To confirm
the validity of the present analysis for such a dome, a partially filled elastic
hemisphere is considered.

Flexible Hemisphere

The first two free edge modes of a partially water-filled aluminum hemi-
sphere of radius a having two circumferential waves (n = 2) are shown in fig-
ure 10 for the full spectrum of £ill conditions, O S h/a < 1. Frequencies and
mode shapes predicted using the present analysis are compared with NASTRAN
results. For this comparison, the pressure loading on the shell wall, generated
by NASTRAN, was applied to the structural program (refs. 8 to 10) used by the
present analysis. Thus, any discrepancy between the two results can be attri-
buted only to differences between the liquid finite-element analysis employed
in NASTRAN and the pressure series analysis proposed herein. Since results for
the propellant tank, previously discussed, indicated that only positive values
of Ap selected on the basis of equation (73) need be considered, only series
terms corresponding to these values were used for the hemisphere. The conver-
gence of the series expansion is indicated in figure 11. As in the case of the
propellant tank, few terms need be retained.

In figure 10 the converged solutions of the present analysis for frequency
and mode shape generally correlate very well with converged NASTRAN-generated
solutions. This example further indicates that the use of a series containing
products of modified Bessel functions and trigonometric functions ideally
applicable to liguids in circular cylindrical tanks can be superimposed to
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solve other geometries with adequate accuracy. Discrepancies between the

two solutions in the second mode at low liquid height probably are due to the
- scarcity of liquid finite elements in the NASTRAN model near the bottom of the
tank.

CONCLUDING REMARKS

An analysis is presented of hydroelastic vibrations of elastic tanks par-
tially filled with incompressible nonviscous ligquid in the presence of gravity.
A complementary energy principle suitable for handling the liquid is derived,
and the liquid is analyzed by using a series representation of the oscillatory
pressure. By selecting each term of the series to satisfy the liquid governing
equation (Laplace's equation), the energy principle reduces to an integral
equation on the wetted portion of the tank wall. This integral equation
represents an approximate statement of the liquid/elastic-~tank compatibility
at the wetted tank wall and may be solved numerically, without discretization
of the liquid volume, to yield the pressure loading on the wall as a function
of wall motion.

This approach permits the wall-motion-dependent liquid pressure loading to
be readily incorporated into existing shell analysis computer programs. This
procedure was followed to produce a modified shell-of-revolution program for
hydroelastic vibrations. In the modified program presented herein, the pressure
series terms (which must satisfy the governing liquid equation) were selected on
the basis of a circular cylindrical tank geometry; that is, each term is a pro-
duct of a modified (or unmodified) Bessel function and a trigonometric (or
hyperbolic) function. The energy principle then allows solution of problems
with geometries other than cylindrical by superposition of these terms. Appli-
cation of the modified program to the gravity sloshing or hydroelastic vibra-
tions of incompressible liquids in tanks of various geometries provides the
following conclusions:

1. Since cylindrical functions are used as series terms, exact solutions
are obtained for cylindrical tanks.

2. Sloshing frequencies for rigid hemispherical tanks correlated very well
with published frequencies; and hydroelastic vibrations in an elastic propellant
tank and in an elastic hemisphere also agreed well with test and finite-element
(NASTRAN) results. Thus, the procedure can be applied to a wide variety of tank
geometries.

3. Accurate results require retaining only a few terms in the series
expansion.

27



4. Selection of the series terms is straightforward and is readily incor-
porated as an automatic feature of the modified program.

In addition, it is found that hydrostatic pressure from the liquid weight can
cause significant stiffening of the tank wall and must therefore be accounted
for, especially in full-scale fuel tanks on large space vehicles.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 30, 1979
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APPENDIX A

LIQUID COMPLEMENTARY ENERGY PRINCIPLE

The purpose of this appendix is to formally state and confirm the validity
of the liquid complementary variational principle used in the analysis presented
in this paper. This principle is analogous to such principles in structures.
The liquid pressures (or in structures, the stresses) are varied within a class
of admissible pressures (or stresses); the admissible variations must satisfy
Euler's equations (or the equations of motion) for perturbed motions about an
initial state. When the variations are carried out, the complementary principle
yields a compatibility equation (or equations) and boundary conditions on veloc-
ities (or displacements).

This appendix proceeds by first stating the principle, then establishing
the admissible class of variations, deriving the appropriate variational comple-
mentary energies, and finally proving the principle.

Statement of Principle

Consider a nonviscous incompressible liquid which undergoes small irrota-
tional harmonic oscillations, with the complex form eJ¥ , about an initial
pressurized state and in the presence of a gravitational field. The deformation
state satisfies the compatibility relation,

V2 = 0 (A1)
in Vo and
%% - (A2)

on S, where w 1is applied. This deformation state makes the variation of the
total complementary energy, Il vanish, that is,

Cc’

S, =0 (A3)

provided that the variations satisfy Eulexr's equation and

O

e}
i

o

on Sg. The next section of this appendix shows that constraining the varia-
tions to satisfy Euler's equation is equivalent to their satisfying a linearized
form of Bernoulli's equation for small perturbations, namely,

Sp = -p 8 + p gduy (a4)
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Furthermore,
I,=T,-U - W (n5)

where Ter Ug g’ and w. - the complementary kinetic, gravitational, and
r

external work energies of the liquid, respectively - are derived in a subse-
quent section of this appendix.
Variation of Euler's Equation for Small Perturbed Motions
Euler's equation which expresses dynamic equilibrium for a nonviscous
incompressible liquid is (see, for example, ref. 17, p. 95)

p.U + QO(U - div)ﬁ + grad P - Po9 grad x = 0 (A6)

where the local Eulerian variables are as follows: Por the uniform mass density

of the liquid; 6, the velocity; and P the pressure. Considering a small
perturbation about an initial pressurized state, one can write

N
U =1
P = PO + p (A7)
X = Xq t Uy

J

In equations (A7), subscript o refers to the initial state and it is assumed
that the liquid is initially at rest. Substituting equations (A7) into equa-
tion (A6) and neglecting nonlinear terms because the perturbations are assumed
small yield

P u + grad p - pog grad u, + (grad PO - P9 grad xo) =0 (AB)

The term in parentheses vanishes since it represents equilibrium in the initial
state and equation (A8) becomes

Pou + grad p - p g grad u, = 0 (A9)
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By introducing the velocity gradient for irrotational flow, as given by equa-
tion (5) of the main text, into eguation (A9),

Po grad é + grad p - P9 grad u, = 0

This equation may be integrated spatially to produce a linearized form of
Bernoulli's equation for perturbed liquid motion, namely,

Pod + P — Pgguy, = O (A10)

where the constant of integration may be safely incorporated into ¢ as dis-
cussed in reference 1, page 15 and elsewhere. The variation of eguation (AlQ)
may now be taken to yield equation (A4).

Variational Complementary Forms of Kinetic, Gravitational,

and External Energies

Complementary kinetic energy.- The well-known complementary kinetic energy
is given as

1 2 N
Tc = 5.5; Pou - u av, (All)
o

where the integration may be safely carried out over the undeformed volume V
since the liquid is assumed incompressible.

o

Substituting equation (5) into (All) yields

1
To = E\S; Po grad ¢ - grad ¢ dvg (A12)
o

Taking the variation of both sides of equation (Al2) results in

5Tc =‘s;o Po grad ¢ - grad &¢ dv, (Al13)
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Green's theorem then provides

8T, = —‘g' Po V24 8¢ avy, + 51 Po grad ¢ - N §¢ ds, (A14)
S

Vo o

where N represents an outward unit vector normal to the undeformed liquid
surface So-

Complementary gravitational energy.- The variation of the complementary
potential energy is found by considering the perturbed state of the liquid and
varying the gravitational body forces which are given by

F = P9 grad X
Taking the variation of F and using equation (A7) gives
SF = pog grad (Suy)

Hence the variation of complementary gravitational energy is

SUc,q = yv §F - U avg :5.\] Pog grad Suy - U AV, (A15)
@] O

Substituting equation (5) into equation (A15) yields

Su = 4L Pog grad Suy, - grad ¢ dv, (A16)
o

Application of Green's theorem to equation (Al6) gives

904 gpe 3
- 2 ) ¢
= - Vv ¢ Gux dVo + ~§;‘5;O SE 6ux dSo (A17)

6Uc,g jw Vg
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Some previous authors (e.g., refs. 18 and 19) have used the Tong hypothesis,
which states that

u, ® nx(ﬁ CN) = — 2% (A18)

where n, is the cosine of the angle between the local surface normal N and

the x-axis. Under this hypothesis, the surface integral of equation (Al7)
becomes

—_ +— Su, ds_ = - gﬁg— n §Q—ﬁ(——-)ds (A19)
Jjw soaN x “Yo w2 So X 3N o

Substituting equation (Al9) into equation (Al7) gives

9P, 5 90, S‘ 3 <§$>
8Ug,g = - To Iy Ve Su, avy - Ez— . Ny 5y S\ 5n/%So (A20)
O O

Thus equation (A20) establishes the gravitational energy variation for a per-
turbing oscillation about an initial state of an incompressible liquid.

Complementary external work.- The variation of the complementary external
work is

oW, = —S‘ w Op dsg (a21)
S

o]

where w 1s the perturbed displacement at the liguid surface in the N

direction. Substituting for O&p from equation (A4), one has
SWC = —pO‘J; w(-jw 8¢ + g 6ux)dSO (a22)
o

Use of the Tong hypothesis {(eq. (Al8)) yields

- Mx (30
SWe = jwpg ‘S‘S w|:6¢ + 2 6(81\1)}680 (a23)

(o]
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Proof of the Variational Principle (Eg. (A3))

Substituting equations (Al4), (A20), and (A23) into equation (A3) results
in

0 =4I, = —.—5\7 I:po Vzd)(-—ju) §¢ + g (5ux)J avg,
o

2 _ . o (36
+ Po -5;0 (BN - ju)w> l:&b + 2 6<8N:]dso (A24)

Use of equation (24) in the volume integrand of equation (A24) gives

. ___1_ 2 ib__- > ﬁ(&_d))
0 =8I, = ju)J;o Vep 8p dvg + OO.J;O <3N jww [%¢ +— $ N ds,

w
(A25)
Since equation (A25) must be valid for all variations,
V29 = 0 (A26)
in VO and
W _ .
ON
on Sw and
gn
5p + 0% 5<3_¢>> -0 (327)
w2 oON

on Sg which from equation (A4) is satisfied by the constraint 6p = 0 on Sg.
Hence, the principle is verified.
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PROOF OF SYMMETRY OF MATRICES A, ﬁl, 82, AND A,

To prove the symmetry of A as defined in equation (32), it suffices to
show that

A
A
NA
A

=

a(':[mn 8qkn )
— - — ds, = 0 1 Bl
S;w ( o8 kn T py  mn) “Sw ( oo ey

Inasmuch as dp, for 1 S m S M vanishes on the free surface (x = 0), the

integration of equation (Bl) may be carried out over the entire surface, Sg,.
Green's second formula then gives

S; (qkn V2q . ~ 9 v2qkn)dv =0 (B2)
o]

But equation (B2) is valid as a consequence of equation (11); hence the proof is
complete.

Similar proofs can be worked out for ﬁl, 32, and 33.
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APPENDIX C

NASTRAN MODELS OF PROPULSION TANK AND LIQUID

Finite-element frequencies and mode shapes used for comparison with results
of the analysis presented in this paper were obtained using mathematical models
described in this appendix. These models were developed within the NASTRAN
hydroelastic capability (ref. 4) and modified according to references 2 and 3 to
permit a symmetric fluid matrix formulation and thereby simplify computational
procedures. The analysis is limited to incompressible fluids, and computational
accuracy and efficiency are significantly increased by introducing a trigono-
metric series representation of circumferentially distributed displacements.

For the present purposes, the modified NASTRAN analysis was used only for
the case of a free liquid surface, with gravity effects neglected. The analysis
is valid also for the more general situation of a pressurized liquid level with
gravity effects included.

Essentials of Modified NASTRAN Analysis for This Study
The theoretical development in reference 2 is based on the complementary

energy principle applied to systems of discrete variables. The complementary
kinetic energy of the liquid is the quadratic function

l A A
Te =3 22 LiPiPy (c1)
i3

written in terms of generalized impulsive pressures which are based on the
pressure impulse definition

t
= 51 p dt (C2a)

o

or

P = ﬁ (C2b)

Since the liquid is assumed incompressible, there is no strain energy. The
quantity Lij' an element of the symmetric inverse mass matrix (termed inertance
matrix in ref. 2), is defined as

2
_ 97T
Llj - ~ ~ (C3)

9p; 3pj

36



APPENDIX C

The complementary virtual work for the discretized system is expressed by
-k
SW, = zz Ajpuy 5pi (c4)
k i

where u; is a discrete displacement of the liquid bounding surface and Ak
is the corresponding elemental generalized area as defined in reference 2.

Equations (Cl) to (C4) are basic to the derivation of the Buler-Lagrange

equations of motion of the liquid in reference 2. For the incompressible liquid,
these equations are shown therein to reduce to the partitioned matrix equation,

P

T T
Lee  Legs  Lfj || Pr Afe  Agf | .
ufg
T T
Lot Des Lsi Pe 2= | Bgg Bgs . (C5)
Ug
Lir  Bis  Dii|(P1 0 0
where subscripts f, s, and i denote free liquid surface, liquid-structural

interface (or wetted surface), and liquid interior, respectively. As a conse-
quence of incompressibility, p; may be related to [pf,p%]T so that

1 1 T T .
Ler  Leg| ) Ps Apg  Bgel| ) ur
o T (ce)
1 1 .
Dsf Lss Ps Afs Bss Us

in terms of the reduced inertance matrix

I—_ ] ]
Ler Lgg Leg  Lgg

Lei -1
LSf L L L Lsi

sf ss

For ligquid displacements (or accelerations) normal to the free liquid surface,

the off-diagonal area submatrices Ags and ATf vanish.
s

Dynamic coupling of the liquid with the tank structure is accomplished by
introducing pressures determined from equation (C6) into a standard set of
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structural dynamic equations, which may be written in the corresponding par-
titioned matrix form

+ = (c8)

Since the entire surface is constrained, that is,

{Pf}_ =0 (C9)

equation (C6) is solved to give

—[L;S] -1 [AES:KHS} (C10)

{es)

G- [ e [ [5060)

Substitution of equation (Cl0) into equation (C8) results in

[MS + ML]{iis} + [KSS]<US} =0 (C12)

which is the equation of free vibration of a liguid-loaded tank, with the liquid
loading given by the liquid mass matrix

[ML:I = [Ass] [Lés:l—l[p*gs] (c13)

For simple harmonic motion, equation (Cl2) reduces to the familiar eigenvalue
equation

and

[[KSS] - wZ[MS + MII' {u}=0 (C14)

which gives the frequencies and mode shapes of a liquid-loaded tank in free
vibration.

38



[

APPENDIX C
Computer Program Implementation

The NASTRAN hydroelastic computer program of reference 4 is utilized and
modified to implement the analysis of reference 2. As detailed in reference 3,
the unsymmetric matrix formulation in the complex eigenvalue module {(Rigid
Format 7) is altered to compute the symmetric liquid mass matrix of equa-
tion (Cl3). The combination of this matrix with the tank structural mass and
stiffness matrices, as indicated in equation (Cl4), is programmed in the normal
vibration mode module (Rigid Format 3). The program modifications were made in
accordance with the NASTRAN Direct Matrix Abstration Program (DMAP) for altering
rigid formats.

Harmonic representations.~ The liquid geometry is assumed to be axisym-
metric, so that pressure distributions can be represented by a trigonometric
series, such as (e.g., in ref. 2)

n

p(ri,0;,24) = p (ri,z;) + zg [pk(ri,zi) cos kb, + p;(ri,zi) sin k@i} (C15)
k=1

in terms of circumferential harmonics (n = 0,1,2,...), where P and p; are

generalized pressure amplitudes of symmetric and antisymmetric distributions,
respectively. The condition of uniform pressure is given only for n = 0 in
equation (Cl5). Harmonic pressure distributions such as equation (Cl5) are pro-
grammed in reference 4 and unchanged in reference 2.

A significant modification introduced in reference 2 is the trigonometric
series representation of structural grid displacements consistent with equa-
tion (C1l5). Relationships between discrete-displacement and harmonic-
displacement amplitudes are listed therein for cylindrical and spherical coordi-
nate systems. All rigid-body motions are included in these relations. The
transformations from discrete to harmonic displacements (in ref. 2) are made by
including multipoint constraints (MPC) of the form

{vg) = [Con){wn) (c16)

in the input data, where {ug is the discrete grid displacement vector, {uh}
is the harmonic-displacement vector, and [Ggé] is the MPC transformation matrix.
Elements of [Ggh] are trigonometric functions evaluated at discrete-variable
grid locations of the tank structure. Harmonic displacements are oriented to a
set of fictitious grid points distributed along the tank meridian and distinct
from physical grid points. At each meridian in the physical grid system, physi-
cal grid points around the circumference are related to the so-called harmonic
grid points by equation (Cl6).

This transformation not only makes displacement and pressure representa-
tions consistent but can also result in large reductions in the number of
degrees of freedom for hydroelastic dynamic analysis. For all six degrees of
freedom at each physical grid point, the maximum number of degrees of freedom in
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the physical system is 6 X J X K, where J denotes the number of meridians and
K the number of circumferential grid points at each meridian. This triple
product is the dimension of {ug} (i.e., number of rows) in equation (Cle6).

If N denotes the number of harmonics (or circumferential wave numbers
n=20,1,2,...) included in the analysis, the dimension of {uh} is 6 X N, and
since N is usually much smaller than either J or K, equation (C16) can
result in a radical reduction in problem size, namely N/JK. Still further
reduction is possible by omitting generalized rotation and tangential degrees
of freedom in a Guyan reduction, with harmonic grid points referenced in
NASTRAN OMIT instructions.

Computations of liquid pressures and masses.- Liquid finite elements in
NASTRAN are rectangular and triangular solids of revolution interconnected by
concentric rings comprising the liquid grid system. The liguid elements
(CFLUIDi, i=2,3,4) and their ring boundaries (RINGFL specifications) are analo-
gous to structural finite elements and grid points, respectively. Liquid incom-
pressibility is represented by removal of internal pressure degrees of freedom

({pi} in eqg. (CS)) by means of a special OMIT instruction in which the con-
centric rings are referenced by a 7-digit integer numbering system. The surface
pressure constraints in equation (C9) are represented by special single-point
constraints (SPC), also referencing the 7-digit ring identification. The wetted
tank surface is represented by GRIDB instructions which relate structural grid
points (GRID) there with ligquid-element boundaries. Since liquid pressures
calculated by equation (Cl0) depend primarily on outward normal (or radial)
accelerations, rotations and tangential displacements are constrained (by SPC
instructions), and MPC relations between physical and harmonic degrees of free-
dom (eqg. (Cl6)) are reduced by a factor of 6.

The symmetric f£luid mass matrix given by equation (C13) is calculated by
modifying the program steps of Rigid Format 7 so that the complex eigenvalue
routine (CEAD) is not used. These modifications are specified in reference 3 by
DMAP ALTER instructions for matrix printout, partitioning, and matrix inversion
to form the liquid inertance, surface area, free surface accelerations (or dis-
placements), pressure, and mass matrices of equations (Cl0), (Cll), and (Cl1l3).
Along with these types of instructions are direct matrix input (DMI) specifica-
tions in the input data in the form of partitioning vectors to identify pressure
and displacement degrees of freedom. The OUTPUT3 DMAP instruction causes the
liquid pressure and mass matrices to be punched on cards in DMI format.

Vibration modes of liquid-loaded tank.- Liquid pressures and masses, plus
free surface motions (eg. (Cll)), as desired, output in Rigid Format 7 are
input as data in Rigid Format 3 to obtain normal free vibration modes. Liquid-
structural coupling is directed by DMAP ALTER instructions as shown in refer-
ence 3 prior to execution of the real eigenvalue routine (READ). The tank
structure is modeled by flat plate elements (CQUAD2) interconnected by grid
points. Harmonic grid points are included, as in the liquid model, and the MPC
relations include harmonic representations of all six degrees of freedom (three
displacements and three rotations) at each physical grid point. Rotations and
tangential displacements, constrained by SPC instructions in Rigid Format 7, are
removed by OMIT instructions in Rigid Format 3.
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NASTRAN Models

NASTRAN finite-element models of the liguid-loaded elastic propellant tank
of figure 2 are illustrated in figures 12 and 13. The model in figure 12 isg
similar to that used in references 2 and 3 except for the liquid element bound-
aries in figure 12(a). A finer grid model is shown in figure 13. Free surface
motions, given by equation (Cll), were not sought. Physical and harmonic grid
points in the upper and lower domes and in the conical section are oriented in
spherical coordinates, and grids in the cylindrical section are in cylindrical
coordinates. The closer spacing between concentric rings near the tank wall is
intended to simulate more accurately large pressure gradients there, particu-
larly for higher circumferential wave numbers (or harmonics). The meridional
ligquid grid locations match the meridional structural grid locations along the
wetted surface.

Liquid models.- The coarse liquid grid system in figure 12(a) consists of
15 meridional stations with 4 liquid-element boundaries at each meridian except
3 near the tank bottom which have fewer boundaries. The model has a total of
1386 possible pressure and displacement degrees of freedom. The free surface
pressures are constrained by 16 liquid SPC statements, and all but the radial
displacements are constrained by 987 structural SPC's. Incompressibility
accounts for another 132 pressure degrees of freedom being removed by liquid
OMIT statements. Harmonic representations of radial displacements through MPC
relations account for another 135 degrees of freedom.

There are 116 degrees of freedom remaining, of which 56 are pressures and
60 are displacements. Four harmonics (N = 4) are included in this mode,
n=20 to 3, so that (J-1)N = 56 and JN = 60, where J in this case is 15.
These integer products determine the matrix sizes and partitions for liquid
pressures and masses on the DMI specifications for the vector P9 in the DMAP
ALTERS of reference 3. The pressure matrix (PDU2) in reference 3 computed for
this model is rectangular with 56 rows and 60 columns, and the symmetric liquid
mass matrix (MFLD) is 60 X 60.

The fine liquid grid system in figure 13(a) consists of 28 meridional sta-
tions with 6 liguid-element boundaries at each meridian except 2 meridians
closest to the tank bottom, where 4 and 5 rings bound 5 liquid elements. The
maximum number of degrees of freedom for this model is 3537. There are 2818 SPC
statements, of which 6 are fluid SPC's constraining free surface pressures.
Liguid OMIT statements account for 132 degrees of freedom and MPC relations for
another 532. In the remaining 55 degrees of freedom, there are 27 pressures and
28 displacements. With one harmonic at a time (N = 1) in this model, the number
of displacements is the same as the number of meridians (J = 28, N = 1), and
the number of pressures is one less. Thus, the liquid pressure matrix is
27 X 28 and the liquid mass matrix 28 X 28.

For partially filled tanks, the number of pressures is reduced, but not the
number of displacements. The reduced number of pressures is obtained by sub-
tracting more than one meridian from J for the full tank; that is, J-1
becomes J-2, J-3, J-5, and so forth for various reduced levels of the liquid.
Pressures above the liquid surface are constrained by liquid SPC statements.
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Structural models.- The coarse structural model of figure 12(b) has 9 phys-
ical grid points around half the circumference at each meridian, with a 22.5°
interval between circumferential grid points. The top and bottom domes are
modeled by triangular plate elements (CTRIA2) which connect the apex grid points
to the grid points at the full tank level and at the lowest meridian. The maxi-
mum number of degrees of freedom is 1182, including 60 harmonic displacements.
Constraints (SPC) are applied to 72 degrees of freedom, of which 48 satisfy
boundary conditions for motions associated with n = 0 that are symmetric with
respect to the pitch plane of symmetry. The remaining 24 constrained degrees of
freedom simulate the tank mounting in the test program (appendix D), that is,
the clamped ring modeled by beam elements (CBAR), at the base of the cylindrical
section. Application of the Guyan reduction accounts for 240 omitted degrees of
freedom (on OMIT statements), of which 28 are associated with harmonic n = O
and the rest with harmonics n = 1, 2, and 3. There are 810 MPC relations to
implement the harmonic representation of all 6 physical degrees of freedom at
each grid point. The remaining degrees of freedom number 60. Although har-
monics n =1, 2, and 3 are included in the calculations, vibration modes of
tank and fluid are reported only for variations in tank fullness associated with
the axisymmetric mode n = 0, for which the coarse liquid and structural grids
illustrated in figure 12 are considered adequate.

The fine structural model of figure 13(b) has 19 physical grid points
around a quarter of the circumference at each of 30 meridians, with a 5° inter-
val between circumferential grid points. Two of these meridians lie above the
full tank level, and apex grid points are connected to the highest and lowest
meridians by triangular plate elements. There are a total of 3612 physical and
harmonic degrees of freedom which reduce to 28 harmonic degrees of freedom.
Constraints specifying symmetric boundary conditions at the apexes plus clamped
ring constraints total 12. The Guyan reduction is applied to the apexes, con-
sistent with symmetric boundary conditions, for all harmonic degrees of freedom
at the two meridians above the full tank level and for all but the harmonic
radial degree of freedom over the wetted tank surface. The number of omitted
degrees of freedom totals 152. Harmonic representation accounts for 3420 degrees
of freedom. The fine model was used to calculate liquid-loaded vibration modes
for nonaxisymmetric modes ranging from n = 2 to 16 for both three-quarters
full and full tanks.

Hydrostatic pressure loading.- The effect of hydrostatic pressure was
introduced into the NASTRAN finite-element model by determining an additional
stiffness matrix [AKJ equivalent to the matrix product —[T]_l[F] in equa-
tion (56). Static pressures at a given fluid depth were calculated by the pro-
duct of the depth by the unit weight of liquid and were uniformly distributed
over quadrilateral plate elements forming the tank boundary at that depth.
These pressure loads were computed for every row of plate elements from the
liguid level to the tank bottom and were input (on PLOAD2 statements) to the
structural model for n = 0. This model was then run in the NASTRAN differ-
ential stiffness module (Rigid Format 4) which was instructed by DMAP ALTER to

output [AKJ onto magnetic tape. This additional stiffness matrix was then
read (also by DMAP ALTER) into Rigid Format 3 and added to the structural
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stiffness matrix [Kss]. The eigenvalue equation (Cl4) was then solved in the

usual manner to obtain the natural frequencies and mode shapes of the liquid-

loaded tank under hydrostatic pressure. The effect of this hydrostatic pres-

sure loading was determined for full and three-quarters full tanks for nonaxi-
symmetric modes using the fine-grid model of figure 13.
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PROPELLANT TANK TESTS

This appendix contains a brief description of the propellant tank referred
to in the main text and the equipment and procedure used to obtain the data pre-
sented therein.

Propellant Tank

The propellant tank depicted in figure 2 is a 1/8-scale model of an early
version of the space shuttle liquid-oxygen tank. The tank is made up of four
aluminum sections: an upper dome of nearly spherical shape, a conical section,
a cylindrical section, and a lower dome of nearly ellipsoidal shape. The over-
all diameter and height of the tank are approximately 1 and 2 meters, respec-
tively. The wall thicknesses of the various sections are indicated in figure 2.
A flange at the juncture of the lower dome and cylindrical section of the tank
is clamped to a heavy steel test fixture shown in figure 2.

Nonaxisymmetric Tests (n # 0)

Sinusoidal excitation of the tank was provided by a small servocontrolled
electrodynamic exciter driving normal to the surface of the cylindrical or
conical section of the tank and, where applicable, below the liquid surface.
Maximum force capability of the exciter was 4.4 newtons. A force gage used to
monitor the input force was installed between the exciter and tank shell. A
servocontrol and oscillator were employed to maintain a constant sinusoidal
exciter force.

The response of the shell was detected by a motorized noncontacting dis-
placement transducer which traversed a circular track (fig. 2). The track could
be positioned at any desired station along the length of the tank. A coincident-
quadrature analyzer was used to measure the quadrature component of the dis-
placement (90° out of phase with the input force). Resonance was determined by
manually adjusting the exciter frequency at a given level of input force until a
maximum quadrature component was obtained. The circumferential mode shape was
then recorded by inputting the quadrature component of the displacement into an
X-y plotter as the transducer traversed the circumference of the tank. Quali-
tative longitudinal variation of the mode shapes was obtained by observing the
Lissajous pattern on an oscilloscope screen as a hand-held velocity transducer
was moved to several axial stations along the tank. Vibration modes were mea-
sured for liquid (water) depths of 0, 1.27, and 1.90 meters corresponding nomi-
nally to empty, three-quarters full, and full conditions.

Axisymmetric Tests (n = 0)

For the axisymmetric vibration modes, analyses indicate (fig. 6(b)) that
the largest vibration amplitudes occur below the liquid level and that at the
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greater liquid depths, the vibration amplitude of the conical and cylindrical
sections are of magnitude comparable with that on the lower dome. In the labo-
ratory, however, the response of the cylindrical and conical tank sections in
the high-energy axisymmetric modes is completely masked by the large response in
the neighboring low-energy nonaxisymmetric modes. The problem is further aggra-
vated for this particular tank by the high modal density of the nonaxisymmetric
shell modes in the same frequency range as the axisymmetric modes. Axisymmetric
nodal patterns were identifiable, however, on the lower dome, and in figure 6(a)
the resonant frequencies of the first three lower-dome n = 0 modes are plotted
as a function of the liquid depth. Except at the shallower liquid depths, an
axisymmetric dome response was always coupled to a much larger nonaxisymmetric
response of the cylindrical and conical sections; thus, most of the data points
of figure 6(a) are in reality the resonant frequencies of n # 0 shell modes

in proximity to the resonant frequencies of the n = 0 dome modes. In some
cases, two or more n = 0 dome responses having the same nodal pattern were
present in a small frequency band. If the response at one freguency was appre-
ciably larger than the others, only one data point was recorded. If the
response of two closely spaced resonances were of comparable magnitude, both
frequencies were recorded.

Many of the axisymmetric modes did not exhibit classical characteristics in
that where one segment of the lower dome contained only one circumferential node,
another segment might contain two. Such cases are designated in figure 6(a) by
the superposition of the appropriate nodal pattern symbols.

The noncontacting probe and track assembly used for the nonaxisymmetric
shell modes could not be readily adapted to measure responses on the lower dome.
The modal patterns on the lower dome were detected either by touch or through
the use of a movable vacuum-attached accelerometer and Lissajous patterns.
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TABLE I.- SLOSHING FREQUENCIES IN A RIGID HEMISPHERICAL TANK

Frequency parameter, 1/n = wzh/g
Results compiled in ref. 6 Present solution
n (Ml = M3 = O)
Finite Method of Integral
= = M =
elements ref. 6 solution M2 2 M2 2 2 10
0] 3.96 3.92 3.65 3.862 3.791 3.790
1 1.57 1.68 1.56 1.620 1.594 1.592
2 —— 3.03 ——— 2.925 2.889 2.887
3 ———— 4.34 —-—— 4.295 4.349 4.359
4 -—— 5.62 - 5.370 5.411 5.414
5 ——— 6.88 —_—— 6.445 6.473 6.475
TABLE II.—- EFFECTS OF THE THREE TYPES OF SERIES TERMS
ON THE n = 6 PROPELLANT TANK FREQUENCIES
Subscript ¢ vrefers to converged results
and subscripts 1, 2, and 3 refer to
m=1, 2, and 3.
3
Mpo| Mp M3 M= Z M w/Wic | wa/wae w3/W3c
i=1
5 0 0 5 1.00 1.01 1.09
0 1 0 1 7.04 7.37 6.47
0 5 0 5 7.06 6.39 5.93
0 0] 1 1 1.74 5.12 6.45
5 5 1 11 1.00 1.01 1.09
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Figure 1.~ General tank geometry and coordinates.
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Figure 13.- Finer grid NASTRAN models of a quarter of propellant tank.
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